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Ewald R. Weibel 

University of Bern 

What Makes a Good Lung? 
Structural Challenges for 
Efficient Gas Exchange 
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      O2 is transported from air 
 to blood by diffusion 

 

Pulmonary diffusing 
capacity DLO2  

Physiology of gas exchanger 

Pa Pv 

1909 Chr. Bohr      1910 Marie & August Krogh 
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Pulmonary diffusing capacity DLO2  
has 2 components: 
 Membrane  DMO2 

  

 Blood   DeO2 

  

DM 
 

De 

50 years later 

Function & structure of gas exchanger 

1957 Roughton & Forster  

Hb 
1/DL = 1/DM+ 1/(q·Vc) 4 



Pulmonary diffusing capacity DLO2  
has 2 components: 
 Membrane  DMO2 

  

 Blood   DeO2 

  

DM 
 

De 

Hb 
1/DL = 1/DM+ 1/(q·Vc) 

1959: André F. Cournand: 
 
“Do anything on the structure of the lung 
that is of interest to physiology” 
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DM 
 

De 

Pulmonary diffusing capacity DLO2  
has 2 components: 
 Membrane  DMO2 ~ S/ 
 Blood   DeO2 ~ V(c) 

 

 

S 

V(c) 

1/DL = 1/DM + 1/De 

Vision of Domingo Gomez (1959): 
 
Predict Lung Function from first principles 

 Physics and Morphometry  
  determine gas exchange capacity 
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1/DLO2 = 1/DMO2 + 1/DeO2
 

 

DMO2 = KO2 · (S(a) + S(c))/2·hb 

DeO2 = qO2 · V(c) 

D.M. Gomez, B.W. Knight, E.R. Weibel (1962-64) based on Roughton & Forster (1957)  

Morphometric Model for predicting DLO2 

hb 

S(a)   S(c) 

 

V(c) 
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Methods for morphometry of human lung 
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L 

S(a)   S(c)   V(c)   hb 

 Elektron Microscopy &  
Stereology 



Morphometry of Human Lung & DLO2 
 

• Body mass     74 ±  4 kg 

• Alveolar surface   130 ± 12 m2 

 

 
 

 

Gehr, Bachofen, Weibel 1978/93 
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Morphometry of Human Lung & DLO2 
 

• Body mass     74 ±  4 kg 

• Alveolar surface   130 ± 12 m2 

• Capillary surface   115 ± 12 m2 

• Capillary volume   194 ± 30 ml 

• Tissue barrier thickness  0.62 ± 0.04 µm 

• Total barrier thickness  1.15 ± 0.01 µm 
 

 

 
 

 

Gehr, Bachofen, Weibel 1978/93 
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Diffusing capacity   DLO2  158  mlO2.min-1.mmHg-1 

  



Does the normal  
human lung have  
excess DLO2 ? 
How much ? 

 
 

Morphometry  and physiology 

 Morphometric DLO2  158  mlO2.min-1.mmHg-1 

 Physiological DLO2 rest   30 mlO2.min-1.mmHg-1 
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Does the normal  
human lung have  
excess DLO2 ? 
How much ? 

 
 

 Morphometric DLO2  158  mlO2.min-1.mmHg-1 

 Physiological DLO2 rest   30 mlO2.min-1.mmHg-1 

         exercise  100 mlO2.min-1.mmHg-1 

Morphometry  and physiology 
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Does the normal human lung  
have excess DLO2 ? 

 Morphometric DLO2  158  mlO2.min-1.mmHg-1 

 Physiological DLO2 rest   30 mlO2.min-1.mmHg-1 

         exercise  100 mlO2.min-1.mmHg-1 

Morphometry  and physiology 
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How good is morphometric diffusing capacity? 
 

Connie Hsia, Dallas 

Test by DLCO in running dogs (1992) 

Running speed 
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Do we have excess diffusing capacity? 
 

Connie Hsia, Dallas 

Test by DLCO in running dogs 

“Recruitment of diffusing capacity” 
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Do we have excess diffusing capacity? 
 

Connie Hsia, Dallas 

DLCO by morphometry 

Test by DLCO in running dogs 
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Do we have excess diffusing capacity? 
 

Connie Hsia, Dallas 

DLCO in running dogs 
& by morphometry 

Test by DLCO in running dogs 

Morphometric estimate 
of DLO2 is correct 
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Does the normal  
human lung have  
excess DLO2 ? 
How much ? 

 
 

 Morphometric DLO2  158  mlO2.min-1.mmHg-1 

 Physiological DLO2 rest   30 mlO2.min-1.mmHg-1 

         exercise  100 mlO2.min-1.mmHg-1 

Morphometry  and physiology 

Does the normal human lung  
have excess DLO2 ? 

 
YES! 
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Is 1.5x excess capacity useful ? 

Athletes increase 
O2 need 1.5 fold  
by training 
muscle & heart 

Adult lung cannot grow: 
Athletes can train for higher VO2max (more mito)  

“up to their DLO2”  
acquired during growth 

• 
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What is a Good Lung ? 
Large Surface  —  Thin Barrier 

• Merits: High Conductance for O2 

   Recruit Diffusing Capacity up to VO2max  

• Problems:   • build, ventilate & perfuse large surface  

    • maintain surface large  

    • keep barrier thin & vital 

 

1.3·106 cm2          1.1·10 -4cm 
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septal fibers 
  

Ep1 

End 

Capillaries interwoven with Septal fibers 

Building a thin extensive barrier 

Minimal barrier 
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Cell population making air-blood barrier 

Ep1         
En 

Fb 

Ep2 

Alveolar Epithelium:   Type 1 cell — Type 2 cell 

Interstitium:   Fibroblast 

Capillary:    Endothelial cell 

 

c 
c 

c 

Surfactant 
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The problem:  
there are very few cells to coat large surface 

Ep1 
Ep2 

Ep2 

En 

En 

En 

En 

23 

NUCLEI 



The problem:  
there are very few cells to coat large surface 

Ep1 
Ep2 

Ep2 

Type 1 cells line 95% of alveolar surface 

En 

En 

En 

In 1 human alveolus: 
 40 type 1 cells 
 77 type 2 cells 
on surface of 220’000 µm2 

 

1 type 1 cell covers 5’100 µm2  

J.Crapo et al. 1982 
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Ep1 

Ep2 Junction 



1300 µm2 

Represents ¼ of 5100 µm2 that Ep1 should cover 

1300 µm2 
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1300 µm2 

= “Non-nucleated plates” 

? 

More cytoplasmic plates than nuclei 

A.Kölliker (1881) 

1 

2 
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 “Non-nucleated plates” ? 
 
 
No control for cell activity 
 

     ?   
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Erroneous conclusion! 

Ep1 

 “Non-nucleated plates” ? 
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Ep1 

One nucleus serves multiple cytoplasmic plates 
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Ep1 
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Complex topology of Type1 cells 



O2 

Solve conflicting physiological problems: 

(1) Minimize barrier thickness for gas exchange: 

 spread cytoplasmic leaflet to 5000 µm2 

(2) Ensure metabolic control & maintenance to periphery: 

 messengers, ATP, proteins etc. 

 

Reduce distance to periphery from ~ 40 µm to ~ 20 µm 

Why complex branching of type 1 cells? 
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Surface coverage of one Ep1 species-independent: 
 
  Human   (74kg)   5’098 µm2 
  Baboon  (29kg)  4’004 µm2 
  Rat          (0.36kg) 5’320 µm2 
 

      J.Crapo et al. 1980, 1982 

 
Ep1 architecture is interspecific phenotype 

Ep1 

Ep1 
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Functional importance of Ep1 architecture: 
 

 Etruscan Shrew  2g:   
 

 highest O2 needs and DLO2 
 thinnest barrier 
 greatest complexity of Ep1 

Ep1 

Ep1 

Human     Etr.shrew 
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Branched Ep1 lost apical-basal polarity 

 —> unable to divide by mitosis 

 

Ep1 in situ cannot proliferate: 

in case of damage 

replenished from stem cells = Ep2 

There is a price to everything 
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ARDS: Type 1 cell destruction 
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Repair by  
Type 2 cell proliferation 
 

M.Bachofen 1974, 1977 
 



ARDS: Type 1 cell destruction 
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Repair by  
Type 2 cell proliferation 
 

M.Bachofen 1974, 1977 
 

Followed by 
Transformation Type 2 to 1 



Conclusions (1) 

 

Architecture of Alveolar Type I cell  

modified from standard epithelial cell model: 
 

— very thin barrier by extensive spreading 

    to 5000 µm2 

    in the interest of efficient gas exchange 

 

—  branching cytoplasmic stems shorten 

     distances for nuclear-based support 

     of cell function 
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Conclusions (2) 

 

Alveolar epithelial cells Type I  

derive from Type II cells  

as progenitors or stem cells 

 

— by transformation into Type I cells 

 

— both in development and repair 
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What does it take to make a Good Lung? 

Very large surface of 
air-blood contact 

Correlativity of 
airways & vessels 

Cell optimization in gas exchanger 
Minimal thickness & maximal surface 
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Thank you ! 


